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Abstract. We perform an analysis of the form factors that rule the structure-dependent amplitude in ra-
diative pion decay. The resonance contributions to π→ eνeγ decays are computed through the proper
construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties
of the three-point Green functions 〈V V P 〉 and 〈V AP 〉, and by demanding the smoothening of the form fac-
tors at high transfer of momentum. A comparison between theoretical and experimental determination of
the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor
form factor. We conclude that, at present and due to the hadronic uncertainties, the search for new physics
in this process is not feasible.

PACS. 11.15.Pg; 12.38.-t; 12.39.Fe

1 Introduction

The radiative decay of the pion is a suitable process to be
analysed within chiral perturbation theory (χPT) [1–4],
the effective field theory of QCD in the very low-energy
region. This framework provides the structure of the rele-
vant form factors through i) a polynomial expansion in
momenta, essentially driven by the contributions of heav-
ier degrees of freedom that have been integrated out, and
ii) the required chiral logarithms generated by the loop
expansion and compelled by unitarity. Both contributions
correspond to the chiral expansion in p2/M2V and p

2/Λ2χ,
respectively, where MV is the mass of the lightest vec-
tor resonance, Λχ ∼ 4πF and F is the decay constant of
the pion. Hence their magnitude is, in principle, compar-
able. The chiral logarithms have thoroughly been studied
in later years up toO(p6) both in SU(2) [5] and SU(3) [6, 7].
However, the size of the polynomial contributions is

more controversial. They involve short-distance dynamics
through the chiral low-energy constants (LECs) of the χPT
Lagrangian and their determination fromQCD is a difficult
non-perturbative problem. Phenomenology and theoret-
ical arguments suggest that the main role is played by the
physics at the scaleMV , i.e. the physics of low-lying reso-
nances, and a lot of effort has been dedicated to pursue this
goal [8, 9]. This assumption,widely known as resonance sat-
uration of theLECs inχPT, implies that the structure of the
form factors is given by the pole dynamics of resonances and
this hintworkswell in all knowncases in the allowed range of
energies as, e.g. scalar, vector and axial-vector form factors
in hadronic decays of the tau lepton [10–14].
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Because Mπ �MV , it is expected that the structure
of the form factors in pion decays should be less relevant
and, accordingly, the approach provided by χPT should
be good enough even when only the first terms of the chi-
ral expansion are included. This is the case of the radia-
tive pion decay, namely π→ �ν�γ, �= µ, e, where constant
form factors (which correspond to the leading order con-
tribution in the chiral expansion) have widely been em-
ployed in the analyses of data. However, the PIBETA col-
laboration [15] showed that a strong discrepancy between
theory and experiment arises for the branching ratio of
the process in a specific region of the electron and pho-
ton energies. Lately the same collaboration, after their
2004 analysis, concludes that the discrepancy has faded
away [16]. Curiously enough this decay has a persistent
story of deceptive comparisons between theory and experi-
ment [17], which have prompted the publication of propos-
als beyond the standard model (SM) to account for the
variance [18–25]. Of these the possibility of allowing a ten-
sor contribution has received particular attention, which
could explain the discrepancy by interfering destructively
with the standardmodel prescription though showing some
inconsistencywith the corresponding tensor contribution in
nuclear β decay [26]. Related with this issue it is essential,
seeking to discern the presence of a newphysics contribution
to the radiative decay of the pion, to provide an accurate
profile of the involved form factors within QCD.
In order to settle the standard model description of

the vector and axial-vector form factors participating in
π→ �ν�γ decays we study, in this article, the structure pro-
vided by the lightest meson resonances. This is very much
relevant on the experimental side because high-statistics
experiments as PIBETA [16] already are able to deter-
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mine, for instance, the slopes of the form factors involved
in these decays. The procedure consists, essentially, in the
construction of the relevant three-point Green functions
(GF) in the resonance energy region with a finite spectrum
of states at the poles of the corresponding meromorphic
functions. This can be carried out by employing a paramet-
ric ansatz or a Lagrangian theory (we work it out in both
cases). In a second stage several constraints are imposed on
the parameters or coupling constants, namely chiral sym-
metry at q2�M2R and the asymptotic behavior ruled by
the operator product expansion of the GF for q2�M2R,
whereMR is short for the typical masses of the resonances
in the poles and q2 an indicative squared transfer of mo-
menta of this energy region. This method, guided by the
large-NC limit of QCD [27, 28] (NC is short for the num-
ber of colors), has proven to be efficient [29–41] in order
to collect the constraints that drive form factors of QCD
currents.
Section 2 is devoted to the construction of the vector

and axial-vector form factors using the procedure outlined
above.The studyof thebeyond theSMcontributionof a ten-
sor current to the radiativepiondecay isperformed inSect. 3
and,finally,Sect. 4describes theanalysis of thephotonspec-
trum in this process. After the Conclusions in Sect. 5, three
appendices complete the setting of this article.

2 Radiative pion decay: vector
and axial-vector form-factors

The amplitude that describes the π+→ �+ν�γ process can
be split into two different contributions:

M(π+→ �+ν�γ) =MIB+MSD . (1)

Here MIB is the inner bremsstrahlung (IB) amplitude,
where the photon is radiated by the electrically charged
external legs, either pion or lepton; consequently the inter-
action is driven by the axial-vector current. MSD is the
structure-dependent (SD) contribution, where the photon
is emitted from intermediate states generated by strong
interactions. In the latter case both vector and axial-vector
form factors arise from the hadronization of the QCD cur-
rents within the standard model.
Because π+→ e+νe is helicity suppressed, the IB con-

tribution to its radiative counterpart suffers the same in-
hibition and, consequently, the electron case is the appro-
priate channel to uncover the non-perturbative SD am-
plitude. On the contrary, the π+→ µ+νµγ decay is fairly
dominated by IB. As a consequence the π+→ e+νeγ is of
great interest to investigate the hadronization of the cur-
rents contributing to the SD amplitudes that are driven,
within the standard model, by the vector (FV (q

2)) and
axial-vector (FA(q

2)) form factors defined by1

〈γ|uγαd
∣
∣π−

〉
=−

e

Mπ+
εβ∗FV (q

2)εαβµνr
µpν ,

1 We use the convention ε0123 =+1 for the Levi-Civita tensor
εµναβ throughout this paper.

〈γ|uγαγ
5d
∣
∣π−

〉

= i
e

Mπ+
εβ∗FA(q

2) [(r ·p)gαβ−pαrβ ]

+ ieε∗α
√
2F , (2)

where r and p are the pion and photon momenta, respec-
tively, q2 = (r−p)2 and e is the electric charge of the elec-
tron. The second term in the matrix element of the axial-
vector current corresponds to the pion pole contribution
(which coupling is given by the decay constant of the pion
F ) to the IB amplitude.
For the full set of expressions for the differential decay

rate of π→ �ν�γ in terms of the vector and axial-vector
form factors see, for instance, [42].
Form factors drive the hadronization of QCD currents

and embed non-perturbative aspects that we still do not
know how to evaluate from the underlying strong interac-
tion theory. Their determination is all-important in order
to disentangle those aspects. It is reasonable to assume, as
has been common lore in the literature on this topic, that
hadronic resonance states should dominate the structure of
form factors and, accordingly, meromorphic functions with
poles in the relevant resonances coupled to the correspond-
ing channels have been extensively proposed in order to
fit hadronic data. This procedure by itself is, however, not
fully satisfactory because it does not impose known QCD
constraints.
On the one side, chiral symmetry of massless QCD

drives the very low-energy region of form factors [1–3].
Hence the latter have to satisfy its constraints in this en-
ergy domain. On the other side, one can also demand
that form factors in the resonance energy region should
match short-distance QCD properties. This idea was pio-
neered by [36] and has been used extensively in the last
years [29–35,37–41].
In the following we apply these techniques in order to

determine the standard model description of the vector
and axial-vector form factors in the radiative pion decay.
Their definition, given by (2), illustrates the fact that they
follow from three-point Green functions of the correspond-
ing QCD currents. The proper GF in this case, namely
〈V V P 〉 and 〈V AP 〉, happen to be order parameters of the
spontaneous breaking of chiral symmetry, and they hence
are free of perturbative contributions in the chiral limit.
This is a key aspect required by our procedure. Hence we
consider in this article their study in the chiral limit, which
otherwise should provide the dominant features. In the fol-
lowing we handle the GF in order to provide a description
constrained by QCD, and then we will work out the form
factors.

2.1 Vector form factor

The relevant GF is the 〈V V P 〉 defined by

(ΠV V P )
abc
µν (p, q)

= i2
∫

d4xd4yei(px+qy)
〈
0
∣
∣T
{
V aµ (x)V

b
ν (y)P

c(0)
}∣
∣ 0
〉
,

(3)
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where

V aµ (x) =

(

ψγµ
λa

2
ψ

)

(x) , P a(x) =
(
ψiγ5λ

aψ
)
(x)

(4)

are the octets of the vector and pseudoscalar currents, with
a= 1, . . . , 8. Moreover, SU(3)V symmetry, parity and time
reversal demand that

(ΠV V P )
abc
µν (p, q) = d

abcεµναβp
αqβΠV V P (p

2, q2, r2) ,

(5)

with rµ = (p+ q)µ. In addition Bose symmetry requires
ΠV V P (p

2, q2, r2) =ΠV V P (q
2, p2, r2).

The vector form factor FV (q
2), defined by (2), derives

fromΠV V P (p
2, q2, r2) in the chiral limit by

FV (q
2) =

√
2Mπ+

6FB0
lim

p2,r2→0
r2ΠV V P (p

2, q2, r2) , (6)

with B0 =−
〈
ψψ

〉

0
/F 2.

We do not know how to determine ΠV V P (p
2, q2, r2)

(ΠV V P for short) from QCD in all energy domains but
our knowledge of the strong interaction theory allows us to
know this function in two specific limits as we will comment
now [32, 33, 43].

1. Very low-energy region. The GF has to satisfy the con-
straints of chiral symmetry encoded in χPT. The lead-
ing O(p4) contribution in the chiral expansion is pro-
vided by the Wess–Zumino anomaly [44, 45] and gives

ΠV V P (p
2, q2, r2)�

B0

r2

(
NC

4π2
+O(p2, q2, r2)

)

,

(7)

2. Asymptotic energy region. The perturbative QCD de-
termination of the GF, within the operator product ex-
pansion (OPE) framework gives, in the chiral limit and
at O(α0S)

2,

lim
λ→∞

ΠV V P ((λp)
2, (λq)2, (λp+λq)2)

=−
B0F

2

λ4
p2+ q2+ r2

p2q2r2
+O

(
1

λ6

)

, (8)

lim
λ→∞

ΠV V P ((λp)
2, (q−λp)2, q2)

=−
2B0F

2

λ2
1

p2q2
+O

(
1

λ3

)

, (9)

lim
λ→∞

ΠV V P ((λp)
2, q2, (q+λp)2)

= i
2

λ2
1

p2
ΠV T (q

2)+O

(
1

λ3

)

, (10)

2 Although this result is completely symmetric in the three
momenta, this does not longer hold when gluon corrections are
included [46, 47]. Hence we do not expect that this symmetry
will be sustained when constructing the GF in the resonance
energy region.

where

δab (ΠV T )µρσ (p)

= i

∫

d4xeip·x
〈
0
∣
∣T
{
V aµ (x)T

b
ρσ(0)

}∣
∣ 0
〉
,

(ΠV T )µρσ (p) = (pρgµσ−pσgµρ)ΠV T (p
2) ,

lim
λ→∞

ΠV T ((λp)
2) = i

B0F
2

λ2
1

p2
+O

(
1

λ4

)

,

T aρσ(x) =

(

q̄σρσ
λa

2
q

)

(x) , (11)

where (ΠV T )µρσ(p) stands for the vector tensor GF.
3

In addition to these constraints on the 〈V V P 〉 GF there
is also a requirement that we will enforce in any hadronic
form factor of vector or axial-vector QCD currents. It
is known [48] that the leading perturbative contribution,
within QCD, to the spectral functions of both vector and
axial-vector correlators is constant. Then it turns out, as
a heuristic deduction, that any of the infinite hadron con-
tributions to the spectral functions should vanish at high
transfer of momentum. This implies, in order, that hadron
form factors of those currents should behave smoothly
at high energy [49, 50]. Incidentally this feature coincides
with the known Brodsky–Lepage condition on form factors
(derived within a partonic framework) [51]. Specifically the
condition, in our case, from (6) reads

lim
p2, r2→ 0
q2→∞

r2ΠV V P (p
2, q2, r2) = 0 . (12)

Our task is to construct a function for 〈V V P 〉 that satis-
fies, at least, the set of conditions in (7)–(12).
To proceed we use the ideas of the large-NC limit of

QCD [27, 28] that, essentially, tell us that GF of currents
should be described, in the NC →∞ limit, by meromor-
phic functions emerging from a theory with an infinite
hadron spectrum of stable states. This setting is difficult
to handle and, in practice, one cuts the spectrum reducing
it to the lightest Goldstone or resonance mesons that obey
specific hints4.
In [33] a Lagrangian theory, including one multiplet of

vector resonances only, was designed in order to obtain an
expression for ΠV V P that satisfied all conditions but for
the one in (12). Indeed the fact that only one multiplet of
vector resonances was not enough in order to satisfy all
short-distance constraints for this GF was already previ-
ously noticed [32] with the use of a parametric ansatz. It is
already well known [32, 34] that the MHA is more involved
if we want that our representation of the GF satisfies both
OPE and the Brodsky–Lepage requirements.
The obvious extension is to extend our spectrum by in-

cluding also a multiplet of pseudoscalar resonances in the
construction of the ΠV V P function. Although it can be

3 We use σµν = (i/2) [γµ, γν ].
4 This method is known as minimal hadronic ansatz (MHA)
[29–31].
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shown that indeed this parameterization satisfies the con-
ditions in (7), (8), (12), it fails to meet the OPE condition
in (9)5. It is not difficult to relate this problem to the fact
that the 〈AP 〉 correlator in the chiral limit is saturated by
one pion exchange [46, 47].
It can be seen that all conditions are met if we consider

in the spectrum of the 〈V V P 〉 GF two non-degenerated
multiplets of vector resonances, together with the Gold-
stone pseudoscalar mesons. Then the ansatz would read

ΠresV V P (p
2, q2, r2) =

P0+P1+P2+P3
(

M2V1− q
2
)(

M2V1 −p
2
)(

M2V2− q
2
)(

M2V2−p
2
)

r2
,

(13)

with

Pn =
n∑

k=0

k∑

l=0

cn−k,k−l,l(r
2)n−k(q2)k−l(p2)l , (14)

where the coefficients are symmetric under interchange of
the last two indices ckml = cklm andMVi (i= 1, 2) are the
masses of two nonets of vector resonances in the NC →∞
limit6. In order to satisfy the short-distance constraints
several conditions on the cijk coefficients arise. Hence the
chiral symmetry behavior (7) gives

c000 =B0M
4
V1
M4V2

NC

4π2
. (15)

The OPE condition in (8) is satisfied for

c300 = c030 = c120 = c210 = 0 ,

c021 = c111 =−B0F
2 . (16)

Finally the Brodsky–Lepage behavior on the vector form
factor, defined by condition (12), fixes one additional par-
ameter, namely

c020 = 0 . (17)

Our ansatz, with all these constraints, satisfies also the
OPE conditions in (9) and (10).
If we evaluate now the vector form factor from (6) we

get

FV (q
2) =

Mπ+

3
√
2B0FM2V1M

2
V2

c000+ c010q
2

(

M2V1− q
2
)(

M2V2− q
2
) ,

(18)

and we observe that only one parameter, c010, has not
been fixed by our procedure. The expression for the vec-
tor form factor in the radiative pion decay given by (18)

5 The constraints in (10) and (11) are, in this case,
undetermined.
6 Hadron phenomenology of the pion vector form factor sug-
gests that the mass of the lightest vector multiplet in this limit
is very well approximated by the ρ(770) mass. Hence we will
takeMV1 =Mρ(770).

is the most general one that satisfies the short-distance
constraints specified above. As the transferred momenta in
the π+→ e+νeγ process is small by comparison with the
mass of the lightest vector meson resonance, q2�M2V , it
is appropriate to perform the relevant expansion until first
order in q2. Using the result for c000 given by (15), it gives

FV (q
2) = FV (0)

[

1+λV
q2

M2
π+

+O(q4)

]

, (19)

where λV = Λ
V
NC→∞

+ΛV1/NC + · · · admits an expansion in
1/NC and

FV (0) =

√
2NCMπ+

24π2F
,

ΛVNC→∞ =
M2
π+

M2V1
+
M2
π+

M2V2
+M2π+

c010

c000
. (20)

We must compare our value7 for FV (0) � 0.0271 with
the result coming from Γ (π0 → γγ) and CVC, FV (0) =
0.0261(9), and with the recent experimental fit by the PI-
BETA collaboration, FV (0) = 0.0259(18) [52, 53]. We re-
call that our result for the vector form factor (18) arises
from a large-NC procedure in which a model of the NC →
∞ limit has been implemented, namely the cut in the spec-
trum. At q2�M2V this form factor has been studied up
to O(p6) in χPT [5, 6]. At O(p4) the Wess–Zumino La-
grangian determines FV (0) as given in (20). Higher chi-
ral order corrections to this result vanish in the chiral
limit; accordingly their size is suppressed over the leading
order by powers of M2π/M

2
V or M

2
π/Λ

2
χ that are tiny. In-

deed, using the O(p6) odd-intrinsic parity Lagrangian LW6
worked out in [54], this modification to FV (0) is propor-
tional to a low-energy constant as M2

π+
CW7 , which also

contributes to the π0→ γγ decay. From the latter one ob-
tains [55] CW7 � (0.013±1.17)×10

−3GeV−2, i.e. a value
compatible with zero.
The slope λV arises at O(p6) with the usual two fea-

tures: the local operator OW22 in L
W
6 provides the NC →∞

contribution:

ΛχPTNC→∞ =
64π2

NC
M2π+C

Wr
22 (µ) , (21)

that isO(1) in the large-NC expansion, and a one-loop cal-
culation that provides the chiral logs corresponding to the
next-to-leading order [6]:

ΛχPT1/NC
=−

M2
π+

48π2F 2

[

1+ log

(
M2π
µ2

)]

. (22)

There is another process directly related with the 〈V V P 〉
GF, namely π→ γγ∗; hence it should be related with ra-
diative pion decay. Indeed within the assumptions that
carried us to FV (q

2) in (18), the momenta structure for the

7 In the following numerical determinations we will use
F = 0.0924 GeV, Mπ = 0.138 GeV, MK = 0.496 GeV, Mπ0 =
0.135 GeV,Mπ+ = 0.140 GeV andMV1 =Mρ(770) = 0.775 GeV.
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π→ γγ∗ decay should be the same, though with different
normalization. In consequence the ΛVNC→∞ slope in (20) is
the same for both processes.
The π0→ γe+e− amplitude can be expressed by

Mπ→γγ∗ =Mπ→γγ

[

1+λγ
q2

M2
π0

+ . . .

]

, (23)

where q2 = (pe+ +pe−)
2. The slope arises at O(p6) in χPT

and it is [56]8

λγ =
64π2

NC
M2π0C

Wr
22 (µ)−

M2
π0

96π2F 2

[

2+ log

(
M2πM

2
K

µ4

)]

.

(24)

Fortunately it has been measured rather accurately [57] to
be λγ = 0.032±0.004, and we can input this measure to
determine the LEC CW22 (µ), obtaining

CWr22 (Mρ) = 7.0
+1.0
−1.5×10

−3GeV−2 , (25)

where the error includes also the uncertainty of the renor-
malization point µ betweenMρ and 1 GeV. Coming back to
the slope of FV (q

2), we get

λV = 0.041
+0.004
−0.007 , (26)

which compares well with the recent PIBETA measure-
ment λV = 0.070±0.058 [52, 53].
By comparing now ΛVNC→∞ in (20) and Λ

χPT
NC→∞

in (21)
we can provide a determination for the undetermined para-
meter in the GF and then give a full prescription for the
FV (q

2) form factor in (18). For the mass of the first mul-
tiplet of vector resonances we take Mρ(770) and for the
secondMρ(1450) = 1.459GeV:

c010

c000
= (−0.7±0.3)GeV−2 . (27)

Notice that the size of this parameter is of the same order
as the other two terms in ΛVNC→∞. With this result we end
the construction of the vector form factor in radiative pion
decays in the large-NC limit given by (18).
It is interesting to compare our results with those in [33,

58]. As commented above the construction of the 〈V V P 〉
GF in those references was carried out using only one
multiplet of vector resonances; hence the vector form fac-
tor in radiative pion decay did not satisfy the constraint
in (12). With this setting we were able to give a full predic-
tion for the leading contribution to the slope λV , namely,

Λ1RNC→∞ =
M2
π+

M2V

[

1−
4π2F 2

NCM2V

]

. (28)

Using MV =Mρ we got Λ
1R
NC→∞

� 0.027, to be compared
with ΛVNC→∞ = 0.028±0.006 from our analysis above.

8 Notice that one-loop O(p6) χPT contributions, encoded in
Λ
χPT
1/NC

, coincide in π→ eνeγ and π→ γγ
∗ in the SU(3)V limit,

i.e. forMK =Mπ.

The study of the 〈V V P 〉 GF along the lines outlined
in this section can also be carried out within a resonance
Lagrange theory instead of a parametric representation as
given by (13). We collect this procedure in Appendix A.

2.2 Axial-vector form factor

We now come back to the axial-vector form factor defined
by (2). In order to determine the FA(q

2) form factor we fol-
low an analogous procedure to the one outlined before for
the vector form factor. The relevant GF is, in this case, the
〈V AP 〉 defined by

(ΠV AP )
abc
µν (p, q) =

i2
∫

d4xd4yei(px+qy)
〈

0
∣
∣T
{

V aµ (x)A
b
ν(y)P

c(0)
}∣
∣ 0
〉

,

(29)

where

Aaµ(x) =

(

ψγµγ5
λa

2
ψ

)

(x) , (30)

and the other currents have been defined in (4). The struc-
ture of this GF is slightly more complicated than 〈V V P 〉 as
it involves two scalar functions:

(ΠV AP )
abc
µν (p, q) = 2f

abc

{

B0F
2

[
(p+2q)µqν
q2r2

−
gµν

r2

]

+Pµν(p, q)F(p
2, q2, r2)

+Qµν(p, q)G(p
2, q2, r2)

}

, (31)

with rµ = (p+ q)µ and

Pµν(p, q) = qµpν − (p · q)gµν ,

Qµν(p, q) = p
2qµqν + q

2pµpν − (p · q)pµqν−p
2q2gµν .

(32)

Then the axial-vector form factor is obtained:

FA(q
2) =

√
2Mπ+

B0F
lim

p2,r2→0
r2F(p2, q2, r2) . (33)

A detailed study of this GF along the line we have per-
formed above for the 〈V V P 〉 function was performed
in [35]. One of the conclusions achieved was that the
inclusion of one multiplet of vector, axial-vector and
pseudoscalar resonances (together with the pseudoscalar
mesons) was enough to satisfy the matching to the OPE
expansion of the 〈V AP 〉GF at leading order. Moreover the
analogous to the Brodsky–Lepage condition (12), in this
case, was also satisfied, i.e. the resulting axial-vector form
factor FA(q

2) behaves smoothly at high q2. We refer the
reader to that reference for details. Hence we obtain for
NC →∞ with a cut spectrum

FA(q
2) =

√
2FMπ+

M2A− q
2

(
M2A
M2V
−1

)

, (34)
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Table 1. Comparison of theoretical and experimental determinations for the low-
energy expansion of vector and axial-vector form factors. The PIBETA determination
assumes that the axial-vector form factor is constant, i.e. it does not consider a slope

Experiment [16] SU(2) [5] SU(3) [7] Our work

FV (0) 0.0258(18) 0.0271 0.0272 0.0271
λV 0.070(58) 0.044 0.045 0.041
FA(0) 0.0121(18) 0.0091 0.0112 exp. input
λA not measured 0.0034 ∼ 0 0.0197(19)

whereMA is the mass of the lightest axial-vector multiplet
of resonances in the NC →∞ limit.
At q2�M2A we may resort again to χPT [5, 7] with the

expansion

FA(q
2) = FA(0)

[

1+λA
q2

M2
π+

+ . . .

]

. (35)

Both terms,FA(0) and slope, satisfy an expansion in 1/NC ,
for instance λA = Λ

A
NC→∞

+ΛA1/NC + . . . From our result
above we get

FA(0) =
√
2FMπ+

(
1

M2V
−
1

M2A

)

,

ΛANC→∞ =
M2
π+

M2A
. (36)

FA(q
2) arises first at O(p4) with a constant local contribu-

tion from the χPT Lagrangian, namely

F
(4)
A (q

2) = 4
√
2
Mπ+

F
(Lr9+L

r
10) . (37)

The next corrections appear at O(p6) in the chiral expan-
sion [7]. One of them results from local operators of the
O(p6) chiral Lagrangian that, in the chiral limit, only con-
tribute to λA:

λ
(6)
A

∣
∣
∣
NC→∞

=
M2
π+

Lr9+L
r
10

[

Cr78−2C
r
87+
1

2
Cr88

]

. (38)

There is also a subleading term, in the large-NC expansion,
that comes from one-loop diagrams involving the O(p4)
chiral Lagrangian. However, it only affects FA(0) and it
is zero in the chiral limit. The third correction is sub-
subleading and results from two-loop diagrams evaluated
with the O(p2) chiral Lagrangian. The latter contributes
both to FA(0) and λA. All local additions, F

(4)
A (q

2) and

λ
(6)
A

∣
∣
∣
NC→∞

, correspond to our result in (36), i.e.NC →∞,

when LECs are saturated by resonance contributions [35].
Though the full O(p6) chiral result is rather cumbersome,
the authors of [7] have provided a numerical expression
for the renormalization scale µ =Mρ. The conclusion is
that, in the chiral limit, subleading contributions to the
slope are negligible. This notwithstanding, it is relevant
to emphasize that both χPT results of [5, 7] use models
to evaluate the resonance contributions to the O(p6) local
terms and, accordingly, their final conclusion is tamed by
this estimate.

We now turn to our numerical results. Contrarily to
what happens in the vector case, where the lightest vec-
tor resonance mass in the NC →∞ limit is well approxi-
mated by the ρ(770) mass, the axial-vector mass in that
limit (MA) differs appreciably from the lightest multiplet
of these resonances, namely a1(1260). The result MA =√
2MV was obtained in [36] by imposing several short-
distance constraints on the couplings of the resonance La-
grangian. Lately [49, 50] it has been noticed that the inclu-
sion of NLO effects in the large-NC expansion is a pointer
toMA ≤

√
2MV . These results are rather different from the

mass of the lightest axial-vector meson determined experi-
mentallyMA � 1.230GeV�Ma(1260) [14] but it is import-
ant to remind that this resonance is rather wide.
Our strategy is the following: we will use the experi-

mental value of FA(0) as given in Table 1 to determineMA
through (36); then we provide a prediction for λA. We find

9

MA = 998(49)MeV ,

λA = 0.0197(19) , (39)

where the error stems only from the experimental uncer-
tainty in FA(0). Notice that this result satisfies MA ≤√
2MV � 1096MeV.

2.3 Theory versus experiment

We are now ready to compare our results with other theor-
etical settings and experimental determinations. In Table 1
we compare our outcome for the low-energy expansion of
the form factors with the one provided by O(p6) χPT and
the recent PIBETA published values.
As FV (0) is ruled by the Wess–Zumino anomaly all the

theoretical results agree for this parameter. Leading cor-
rections to this value are driven by the pion mass and as
a result happen to be tiny [33]. This is also reflected in
the excellent comparison with the experimental determin-
ation. The agreement is also good for the slope of the vector
form factor, considering the large error of the experimental
value.
For the axial-vector form factor a similar consensus

does not arise. As indicated above χPT can only predict

9 It is important to notice that the value of FA(0) measured
by the PIBETA experiment assumes no slope for the axial-
vector form factor. We should repeat this exercise when λA is
included.
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reliably all loop contributions (up to O(p4) in the even-
intrinsic parity and O(p6) in the odd-intrinsic parity sec-
tors), while higher order loops involve the couplings of local
operators. Moreover tree-level O(p4) (37) and O(p6) (38)
terms can only be determined in different models for reson-
ance saturation contributions. The excellent agreement be-
tween the χPT results and the experimental determination
of FA(0) is, indeed, not a major issue as the axial-vector
form factor in radiative pion decay is the main phenomeno-
logical source10 to fix the value of Lr10 . It happens that

F
(4)
A (0) arises from a strong cancellation between the L

r
9

and Lr10 LECs and, in consequence, it is very sensitive to
the chosen value for Lr10. In terms of resonance saturation
this sensitivity moves to the value of the axial-vector mass
MA input in the numerical determination. The value of
Lr10 �−5.5×10

−3, used by [7], arises forMA � 1 GeV.
Our model of large NC gives the leading result for the

axial-vector form factor parameters and there are leading
Goldstone mass driven contributions that we have not con-
sidered. In the χPT framework these O(p6) corrections
arise from the LECs and, a priori, it is difficult to estimate
their contribution due to our lack of reliable knowledge on
those low-energy couplings. However, it has been pointed
out [7] that the role of LECs is unimportant in the O(p6)
corrections. As the subleading loop contributions are also
tiny, it is concluded that λA is not sizeable, and FA(0) is
ruled by the leading O(p4) contribution by far.
However, using as input the experimental value ofFA(0)

we find a large value for λA. As subleading 1/NC loop con-
tributions seem to be tiny our leading result shows a clear
discrepancy with the estimates of tree-level contributions
performed in the chiral framework [5, 7]. It would be very
interesting to have an experimental determination of λA in
order to disentangle the different resonancemodels.

3 Beyond SM: tensor form factor

As pointed out in Sect. 1, the history of the radiative de-
cay of the pion accumulates a few clashes between theory
and experiment. It seems though that, after the latest an-
alysis by the PIBETA collaboration, the landscape has
very much been smoothened. However, it has become cus-
tomary to investigate possible contributions beyond the
standard model in order to appease alleged discrepancies.
Between the latter the possible role played by a tensor form
factor has thoroughly been studied [18–25].
The new short-distance interaction can be written in

terms of quark and lepton currents, and it reads

LT =
GF

2
√
2
VudFT [q̄σµν(1−γ5)q]

[

�̄σµν(1−γ5)ν�
]

,

(40)

where FT is an adimensional parameter measuring the
strength of the new interaction. As the product σµνγ5

10 Lr9 is rather well determined from the phenomenology
(squared charge radius of the pion) and its numerical value
agrees nicely with resonance saturation.

is not an independent Dirac matrix (due to the identity
σµνγ5 =− i2ε

µναβσαβ) we can write (40) as

LT =−
GF√
2
VudFT [q̄σµνγ5q]

[
�̄σµν(1−γ5)ν�

]
. (41)

In the standard model the latter structure, a tensor-like
quark–lepton interaction, arises from loop corrections to
the tree-level amplitudes and gives a tiny value for FT ∼
10−8 [19, 20]. More sizeable contributions could come from
new physics models. Leptoquark exchanges, for instance,
could give FT ∼ 10−3 [21], while SUSY contributions pro-
vide FT ∼ 10−4–10−5 [19, 20] for light supersymmetric
partners.
The hadronization of the tensor current, at very low

transfer of momenta, is driven by the constant fT defined
by

〈
γ |ūσµνγ5d| π

−
〉
=−
e

2
fT (pµεν −pνεµ) , (42)

where p is the photon momentum11. The determination of
fT involves QCD in its non-perturbative regime and, con-
sequently, is a non-trivial task. We will come back to this
issue in the next subsection.
It is possible to obtain the product T = FT fT from

the analyses of different processes. Hence from some pre-
vious discrepancy in the π→ eνeγ process it is found that
Tπ =−(5.6±1.7)×10−3 [18], while from the introduction
of a Gamow–Teller term in the amplitude of nuclear β-
decay [26] gives TN = (1.8±1.7)×10−3.

3.1 〈V T 〉 Green function: the tensor form factor

If we want to extract information on the value of FT from
experimental data, we need a reliable QCD-based deter-
mination of the hadronic tensor form factor. Using LSZ
and working at leading order in the pion mass we can ex-
press the matrix element (42) as follows12:

〈
γ |ūσµνγ5d|π

−
〉
=

i
√
2F

〈
γ
∣
∣ūσµνu+ d̄σµνd

∣
∣ 0
〉

=−i

√
2e

3F
ΠV T (0)(pµεν −pνεµ) ,

(43)

where in the last step we have used again the LSZ reduc-
tion formula applied to the 〈V T 〉 correlator defined in (11).
Then we have

fT = i
2
√
2

3F
ΠV T (0) . (44)

11 There is in fact another Lorentz structure contributing to
this matrix element, but it carries higher orders in the mo-
menta. If the latter is included, fT acquires a dependence on
the square of the transferred momenta, i.e. fT (q

2). See Ap-
pendix B for a detailed evaluation of both form factors.
12 See Appendix C for a derivation of this expression.
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To determine the 〈V T 〉 correlator it suffices to employ (10)
with our ansatz in (13). It gives

ΠV T (q
2) =

i

2

c110+ c200+2c111q
2

(

M2V1− q
2
)(

M2V2− q
2
) , (45)

which satisfies the proper high-energy behavior ruled
by (10). Unfortunately ΠV T (0) is not fully specified by
short-distance constraints within our approach as we have
only fixed the c111 parameter.
In order to provide an estimate for fT we consider

this correlator including one multiplet of vector resonances
only. To proceed we can use the results for the 〈V V P 〉 GF
as in [33] (using (10) for instance) or, equivalently, from the
〈V AP 〉 GF [32, 35]. Both procedures yield the same result,
namely

ΠV T (q
2) =−i

B0F
2

M2V − q
2
, (46)

which matches the OPE result [61]:

lim
λ→∞

ΠV T (λ
2q2) = i

B0F
2

λ2q2
+O

(
1

λ4

)

, (47)

when the large momentum limit is taken. Notice that the
result (46) can be recovered from (45) by taking the limit
MV2 →∞, demanding c111 = 0 and identifying the rest of
the constants. Using (46) in (44) yields:

fT =
2
√
2B0F

3M2V
. (48)

An educated guess can be obtained by writing B0F =
−
〈
ψ̄ψ

〉

0
/F and the estimate

〈
ψ̄ψ

〉

0
(1 GeV) = −(242±

15MeV)3 [62]. We obtain fT = 0.24±0.04.
Another parameter of interest is the susceptibility of

the quark condensate χz defined by the vacuum expec-
tation value of the tensor current in the presence of an
external source Zµν [63–65]:

〈

0
∣
∣ψ̄σµνψ

∣
∣ 0
〉

Z
= gψχz

〈

ψ̄ψ
〉

0
Zµν . (49)

In our case we consider the magnetic susceptibility χ given
by an external electromagnetic field by

〈
γ
∣
∣ūσµνu+ d̄σµνd

∣
∣ 0
〉
=−ie (eu+ ed)χ

〈
ψ̄ψ

〉

0
Fµν ,

(50)

with eu = 2/3 and ed = −1/3. Using the first equality
of (43), we get

fT =−

√
2

3
χB0F , (51)

and comparing with (48) we obtain

χ=−
2

M2V
� −3.3GeV−2 . (52)

There are several determinations of the magnetic suscep-
tibility that provide a range that runs from χ =−(8.16±
0.41)GeV−2 [63] up to χ�−2.7GeV−2 [66, 67].

3.2 Lattice data and sum rules

The last years have witnessed increasing attention to the
determination of matrix elements of tensor quark cur-
rents. For instance, together with the QCD sum rules tech-
nique [66–68], by lattice methods one has also performed
evaluations of the amplitudes involving the tensor current
and a vector resonance [69, 70]:

〈
0
∣
∣V aµ

∣
∣ ρb(p, λ)

〉
=−

1
√
2
δabMV fV ε

λ
µ ,

〈
0
∣
∣T aµν

∣
∣ ρb(p, λ)

〉
=−

i
√
2
δabf⊥V (µ)

(
ελµpν − ε

λ
νpµ

)
,

(53)

where ρb(p, λ) is a vector resonance with momentum p, he-
licity λ and polarization vector ελµ. The vector and tensor
quark currents have been defined in (4) and (11). The scale
dependence of the f⊥V (µ) in (53) reflects the fact that the
tensor current has a non-vanishing anomalous dimension.
Within the large-NC framework it can be shown [61, 71]

that if we consider a single multiplet of vector mesons we
get

ΠV T (q
2) =−

i

2

fV f
⊥
V MV

M2V − q
2
. (54)

Comparing with (46) we obtain the relation

fV f
⊥
V =

2B0F
2

MV
. (55)

The fV coupling can be obtained from the measured
Γ (ρ0→ e+e−) [57]. We obtain fV � 221MeV with an ex-
pected tiny error13. Then from (55) and using the value of
the quark condensate quoted above we get

f⊥V (1 GeV) = 165±31MeV , (56)

where the error collects only the uncertainty in the value
of
〈
ψ̄ψ

〉

0
. Our result is in excellent agreement with those

coming from QCD sum rules: f⊥ρ = 160(10)MeV [66, 67]
and f⊥ρ = 157(5)MeV [68].
Lattice evaluations determine the ratio with the vector

coupling. From our results we get

f⊥V
fV
(1 GeV) = 0.75±0.14 . (57)

This is to be compared with the quenched value [69, 70],
run down to µ= 1GeV:

f⊥ρ

fρ
(1 GeV) = 0.74±0.03 . (58)

13 The vector coupling can also be determined from short-
distance analyses within resonance theory [35], giving f2V =

2
F 2M2

A

M2
A−M

2
V

, which translates into fV = 207(15)MeV for MA =

998(49)MeV (39), in excellent agreement with the quoted phe-
nomenological result.
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Finally from the latter result and the phenomenological
value of fV , the lattice method provides the determination

f⊥ρ (1 GeV) = 164±7MeV , (59)

to compare with our figure in (56).

4 Analysis of the photon spectrum
in the radiative pion decay

The PIBETA experiment has thoroughly measured the
photon spectrum in the radiative decay of the pion [15].
Though the results of that reference seemed to confirm
a serious discrepancy with theoretical determinations, an
ensuing analysis of more data and the refinement of sys-
tematic errors [16, 52, 53] has brought a close agreement
between theory and experiment.
The experimental available data amount to the branch-

ing ratio of the radiative pion decay integrated in different
subregions (Q) of the final state phase space:

RQ =
1

Γπ→eν

∫

Q

dQ3
∑

λ

|M(Ee, Eν)|
2
, (60)

where the sum runs over the polarizations of the final par-
ticles. The three regions and the experimental results are
shown in Table 2.
We test the predictions ruled by our determination

for the hadronic form factors with the experimental data,
ignoring first a possible tensor interaction, and compare
them with other theoretical settings. In order to achieve
the accuracy required by the experimental information,
higher order radiative corrections to the decay [72] must be
included, and they have been implemented in our analy-
sis. The numerical input for vector and axial-vector form
factors is given in Table 1.
In the fourth column of Table 2 the latest experimen-

tal data are given; in the fifth and sixth ones we show the
results provided by our analysis. We study the numerical
impact of the momenta dependence of the form factors by
setting the slopes to zero and we conclude that it is tiny:
the q2 dependence tends to increase the central value of R
but the modification is by far within the errors. The last
two columns bring the results yielded by two- and three-
flavor two-loop χPT calculations. The evaluation of the
errors for the theoretical predictions is ruled by those in
the form factors. The estimate of the latter has been done
in the following way: we assume no error coming from the

Table 2. Comparison of the theoretical predictions and the experimental data for RQ = 10
8RQ for constant form-factors and

different predictions of the q2 dependence

Emine+ (MeV) Eminγ (MeV) θmineγ Rexp [52, 53] Rth (without slopes) Rth (with slopes) Rth SU(2) [5] Rth SU(3) [7]

50 50 – 2.614(21) 2.78(38) 2.81(38) 2.46(35) 2.72(38)
10 50 40◦ 14.46(22) 14.81(54) 15.08(58) 14.73(53) 15.00(57)
50 10 40◦ 37.69(46) 38.08(98) 38.41(103) 37.51(94) 38.17(103)

slopes (since their numerical impact is very poor); to the
vector form factor we assign the same error as that of the
experimental determination,∼ 7%, and to the axial-vector
form factor we attach the error of the experimental input.
Finally the error given for the χPT calculations only con-
siders the scale dependence, which is tiny, 5%.
We conclude then that the corrections induced by the

q2 dependence of vector and axial-vector form factors are
numericallynegligibleunlessthetheoreticalerror isreduced.
For thiswewouldneed a better determination of vector and,
specially, axial-vector form factors at q2= 0.When compar-
ing our results with the experimental data, we see that our
predictions are in agreementwithprevious estimates.
As a final exercise we use the experimental data to fit

the value of T = FT fT defined above. In order to reach
this purpose we use the experimentally fitted values for the
hadronic inputs FV (0) and FA(0), and our results for the
slopes λV and λA. Finally, to extract the value of the FT
coupling from the fit, we use our determination for the ten-
sor form factor fT . The value that we obtain is compatible
with zero and its order of magnitude is compatible with
that dictated by SUSY:

FT = (1±14)×10
−4 . (61)

5 Conclusions

Radiative pion decay has been a continuous source of de-
bate between theoretical predictions and experimental de-
terminations. Nevertheless the latest analysis by the PI-
BETACollaboration seems to bring about close agreement
between both sides.
In this article we have performed a detailed analysis of

the structure-dependent amplitudes contributing to π→
eνeγ. The q

2 dependence of vector and axial-vector form
factors, driven by the standard model, has been rigorously
constructed through the study of the 〈V V P 〉 and 〈V AP 〉
Green functions, by matching meromorphic ansätze with
their leading OPE contributions. Moreover, we have also
required that our form factors are soft at high transfer of
momenta. Hence we obtain the most general (and simple)
functions that satisfy all those constraints. The appropri-
ate structure of the form factors requires a double vec-
tor resonance pole for the vector form factor and a single
axial-vector resonance pole for the axial-vector form factor.
After a small momenta expansion we compare our results
with those of χPT and while in the vector sector we find
complete agreement, our slope for the axial-vector form
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factor is much larger than the one provided by models of
local terms in the chiral framework.
The role of a tensor contribution to the radiative pion

decay has customarily been taken into account in order to
analyse the experimental results. We use those in order to
fix the size of the contribution and we find that it is com-
patiblewith zero. Incidentallywehave given a prediction for
f⊥V that measures the coupling of a vector resonanceJ

PC =
1−− to the tensor current.Our results agreewell with deter-
minations fromQCD sum rules and quenched lattice.
We conclude that the standard model is able to em-

body the experimentally known features of the radiative
pion decay. As happens with other decays involving non-
perturbative strong effects, the rather large size of the nu-
merical uncertainties generated by our lack of knowledge
of this QCD regime shows that this process is, at present,
unsuitable for the search of new physics.
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Appendix A: 〈V V P 〉 from a Lagrangian

We used the meromorphic ansatz in (13) in order to de-
termine the vector form factor in radiative pion decay. To
reach the same result, one could also by proceed starting
with a Lagrangian like the one given by resonance chiral
theory (RχT). This study, with one multiplet of vector res-
onances, was already carried out in [33]. However, we have
concluded that QCD constraints seem to indicate the need
of including a second vector multiplet. In this appendix we
construct the short-distance constrained 〈V V P 〉 function
within RχT.
In order to proceed we need to build the odd-intrinsic

parity RχT Lagrangian with two multiplets of vector res-
onances. The interaction pieces are

LevenV =
FV

2
√
2
〈V µν1 f+µν〉+

FV ′

2
√
2
〈V µν2 f+µν〉 , (A.1)

LoddV = LWZ+iεµναβ
{

C̃W7

〈

χ−f
µν
+ f

αβ
+

〉

+iC̃W22

×
〈

∇λf
λµ
+

{

fαβ+ , u
ν
}〉}

+
7∑

i=1

ci

MV1
OiV1JP +

7∑

i=1

c′i
MV2

OiV2JP

+
4∑

i=1

diO
i
V1V1P

+
4∑

i=1

d′iO
i
V2V2P

+
∑

n=a,b,c,d,e

dnO
n
V1V2P

+dfO
f
V1V2J

, (A.2)

where LWZ is the Wess–Zumino Lagrangian [44, 45] that
arises at O(p4) in χPT. As specified above only two oper-
ators contribute at O(p6) [54]. The operators OViJP and
OViViP were already given in [33] and will not be repeated
here. For the last part of the Lagrangian there are two sub-
sets of pieces [59]:

– V1V2P terms, which contain vertices with Goldstone
and two vector resonances from different multiplets:

OaV1V2P = εµνρσ 〈{V
µν
1 , V

ρα
2 }∇αu

σ〉 ,

ObV1V2P = εµνρσ 〈{V
µα
1 , V

ρσ
2 }∇αu

ν〉 ,

OcV1V2P = εµνρσ 〈{∇αV
µν
1 , V

ρα
2 }u

σ〉 ,

OdV1V2P = εµνρσ 〈{∇αV
µα
1 , V

ρσ
2 } u

ν〉 ,

OeV1V2P = εµνρσ 〈{∇
σV µν1 , V

ρα
2 } uα〉 ; (A.3)

– V1V2J terms, with two vector resonances from different
multiplets and one pseudoscalar external source:

OfV1V2J = iεµνρσ 〈{V
µν
1 , V

ρσ
2 }χ−〉 . (A.4)

The result for the 〈V V P 〉 Green function defined in (3) is

ΠRχTV V P =−B0

⎧

⎨

⎩
64C̃W7 −16C̃

W
22

p2+ q2

r2

+
Ar2+B

(
p2+ q2

)

(

M2V1−p
2
)(

M2V1 − q
2
)

r2

+C
1

(

M2V1−p
2
)(

M2V1− q
2
) −

NC

4π2r2

+D

(

1

M2V1−p
2
+

1

M2V1 − q
2

)

+
1

r2

(

Er2+Kp2+Gq2

M2V1 −p
2

+
Er2+Kq2+Gp2

M2V1 − q
2

)

+
A′r2+B′

(
p2+ q2

)

(

M2V2−p
2
)(

M2V2 − q
2
)

r2

+C′
1

(

M2V2−p
2
)(

M2V2− q
2
)

+D′

(

1

M2V2−p
2
+

1

M2V2 − q
2

)

+
1

r2

(

E′r2+K ′p2+G′q2

M2V2 −p
2

+
E′r2+K ′q2+G′p2

M2V2 − q
2

)

+
1

r2

⎡

⎣
A′′r2+B′′p2+Hq2

(

M2V1−p
2
)(

M2V2 − q
2
)

+
A′′r2+B′′q2+Hp2

(

M2V2−p
2
)(

M2V1− q
2
)

⎤

⎦
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+C′′

⎡

⎣
1

(

M2V1−p
2
)(

M2V2− q
2
)

+
1

(

M2V1− q
2
)(

M2V2−p
2
)

⎤

⎦

⎫

⎬

⎭
, (A.5)

where

A= 8F 2V (d1−d3) ,

A′ = 8F 2V ′ (d
′
1−d

′
3) ,

B = 8F 2V d3 ,

B′ = 8F 2V ′d
′
3,

C = 64F 2V d2 ,

C′ = 64F 2V ′d
′
2,

D =−
32
√
2FV c3
MV1

,

D′ =−
32
√
2FV ′c

′
3

MV2
,

E =−
4
√
2FV
MV1

(c1+ c2− c5) ,

E′ =−
4
√
2FV ′

MV2
(c′1+ c

′
2− c

′
5) ,

K =−
4
√
2FV
MV1

(−c1+ c2+ c5−2c6) ,

K ′ =−
4
√
2FV ′

MV2
(−c′1+ c

′
2+ c

′
5−2c

′
6) ,

G=−
4
√
2FV
MV1

(c1− c2+ c5) ,

G′ =−
4
√
2FV ′

MV2
(c′1− c

′
2+ c

′
5) ,

C′′ = 32FV FV ′df ,

B′′ = 4FV FV ′ (db+dc−da−2dd) ,

A′′ = 4FV FV ′ (da+db−dc) ,

H = 4FV FV ′ (da+dc−db) . (A.6)

In terms of the parameters of our ansatz in (13) we obtain

c031 =−G−G
′ ,

c022 =−2(K+K
′)−
NC

4π2
, (A.7)

c121 =−D−D
′−E−E′ ,

c120 = (D+E)M
2
V2
+(D′+E′)M2V1 ,

c111 =A+A
′+2A′′+C+C′+2C′′

+2
(

M2V1+M
2
V2

)

(D+D′+E+E′) ,

c021 =B+B
′+B′′+H+K

(
M2V1+2M

2
V2

)

+K ′
(
2M2V1+M

2
V2

)

+
(
M2V1+M

2
V2

)
(

G+G′+
NC

4π2

)

,

c030 =GM
2
V2
+G′M2V1 ,

c110 =−(D+E)M
4
V2
− (D′+E′)M4V1

− (A+A′′+C+C′′)M2V2
− (A′+A′′+C′+C′′)M2V1
−2(D+D′+E+E′)M2V1M

2
V2
,

c011 =−2KM
4
V2
−2K ′M4V1 −

(
M2V1 +M

2
V2

)2 NC

4π2

−2(H+B′)M2V1 −2(B+B
′′)M2V2

−2(K+K ′+G+G′)M2V1M
2
V2
,

c020 =−G
′M4V1−GM

4
V2

−

(

K+K ′+G+G′+
NC

4π2

)

M2V1M
2
V2

− (B′+B′′)M2V1 − (B+H)M
2
V2
,

c010 =BM
4
V2
+B′M4V1 +(K

′+G′)M2V2M
4
V1

+(K+G)M2V1M
4
V2

+(B′′+H)M2V1M
2
V2
+
(

M2V1+M
2
V2

)

M2V1M
2
V2

NC

4π2
,

c100 = (A
′+C′)M4V1+(A+C)M

4
V2

+2(A′′+C′′)M2V1M
2
V2

+2(E′+D′)M4V1M
2
V2
+2(E+D)M4V2M

2
V1
,

c000 =−M
4
V2
M4V1

NC

4π2
, (A.8)

in units of −B0. Chiral symmetry, implemented in our La-
grangian, brings about features that with the ansatz had
to be forced by hand. In this way we immediately find that
c300 = 0 and c210 = 0. Moreover, as a bonus we also find
c200 = 0.
The rest of constraints are given in (16) and (17). In

addition we find five more relations:

C̃W7 = 0 ,

C̃W22 = 0 ,

G+G′ = 0 ,

D+D′+E+E′ = 0 ,

2 (K+K ′) =−
NC

4π2
. (A.9)

After applying all the constraints coming from the OPE
expansion and Brodsky–Lepage asymptotic condition we
obtain the following relations among the Lagrangian
couplings:

4c3+ c1 = 0 ,

4c′3+ c
′
1 = 0 ,

c1− c2+ c5 = 0 ,

c′1− c
′
2+ c

′
5 = 0 ,

c5− c6+
FV ′MV1
FVMV2

(c′5− c
′
6) =

MV1
FV

NC

64
√
2π2
,

8F 2V d3+8F
2
V ′d

′
3+8FV FV ′(dc−dd)

+8
√
2FV ′

M2V2 −M
2
V1

MV2
(c′5− c

′
6)

+M2V1
NC

8π2
= F 2 ,
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4F 2V (d1+8d2)+4F
2
V ′ (d

′
1+8d

′
2)

+4FV FV ′(da+db−dd+8df)

+4
√
2FV ′

M2V2−M
2
V1

MV2
(c′5− c

′
6)

+M2V1
NC

16π2
= F 2 , (A.10)

8M2V2F
2
V d3+8F

2
V ′M

2
V1
d′3

+4FV FV ′
[
M2V1(db+dc−da−2dd)

+M2V2(da+dc−db)
]
=−M2V1M

2
V2

NC

8π2
.

Appendix B: Chiral Lagrangians with external
tensor sources

In this appendix we determine the matrix element in (42)
by incorporating tensor sources to the resonance La-
grangian. The inclusion of those external fields in χPT has
been studied in [60].
We extend the QCD Lagrangian to accommodate an

external tensor source:

LQCD = L
0
QCD+Lext ,

Lext = ψ̄γµ (v
µ+γ5a

µ)ψ− ψ̄(s− iγ5p)ψ+ ψ̄σµν t̄
µνψ .

(B.1)

The tensor source includes both octet and singlet currents

t̄µν =
8∑

a=0

λa

2
t̄µνa . (B.2)

One finds that

ψ̄σµν t̄
µνψ = ψ̄Lσ

µνt†µνψR+ ψ̄Rσ
µνtµνψL , (B.3)

and the change of basis reads

t̄µν = PµνλρL tλρ+P
µνλρ
R t†λρ ,

tµν = PµνλρL t̄λρ , (B.4)

where PµνλρL,R are the chiral projectors for the tensor fields,
given by

PµνλρR =
1

4
(gµλgνρ− gνλgµρ− iεµνλρ) ,

PµνλρL =
(

PµνλρR

)†
. (B.5)

In order to maintain the chiral invariance of the extended
QCD Lagrangian (B.1) the tensor source must transform
as

tµν → gRtµνg
†
L . (B.6)

It is convenient, in order to build an effective Lagrangian
invariant under the chiral group, to define the tensor oper-
ators

tµν± = u
†tµνu†±utµν†u , (B.7)

transforming with the compensating field

tµν± → h(g, x)t
µν
± h(g, x)

† . (B.8)

To the lowest order in the chiral expansion we have one
operator that contributes to both the radiative pion decay
and the 〈V T 〉 function,

LχPT4
.
= Λ1〈t

µν
+ f+µν〉 . (B.9)

When explicitly including resonances the corresponding
interacting Lagrangian of interest reads

LRχT
.
= Λ̃1〈t

µν
+ f+µν〉+

FV

2
√
2
〈Vµνf

µν
+ 〉

+
√
2FV TMV 〈Vµν t

µν
+ 〉 . (B.10)

The couplings FV and FV T are related with those defined
in (53) by fV =

√
2FV and f

⊥
V =
√
2FV T . Upon integration

of the vector meson we can relate the couplings of the two
Lagrangians:

Λ1 = Λ̃1−
FV FV T

MV
. (B.11)

If resonance saturation of the chiral LECs would hold when
including external tensor sources, Λ1 should be given only
by the second term in (B.11). In fact this is the case when
we enforce short-distance constraints. If we evaluate the
〈V T 〉Green function defined in (11) we obtain

ΠV T (p
2) = i

(

Λ̃1−
FV FV TMV

M2V −p
2

)

, (B.12)

which satisfies the OPE constraint in (11) provided that

Λ̃1 = 0 ,

FV FV T =
B0F

2

MV
. (B.13)

Using now the relation in (44) we get again the result
in (48) for fT .
As mentioned in Sect. 3 there are two form factors in-

volved in the hadronic tensor matrix element

〈
γ |ūσµνγ5d|π

−
〉
=−
e

2
fT (q

2)(pµεν−pνεµ)

−
e

2
gT (q

2) [εq(pµqν −pνqµ)+ qp(qµεν − qνεµ)] ,

(B.14)

where p is the photon momentum and q the transferred
momentum by the tensor current. To generate the second
Lorentz structure one needs operators of higher order in
the chiral expansion, such as

Y93 =
〈
∇µt

µν
+ ∇

αf+αν
〉
, (B.15)

of [60]. In the framework of resonance chiral theory one
needs in addition of the operators in (B.10) the basis of
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odd-intrinsic parity operators of [33]. These new contribu-
tions do not modify result of the fT = fT (0). The result
reads

fT (q
2) =

√
2FV T
3FMV

[

2FV −
(

4
√
2MV (c1− c2− c5+2c6)

+8FV d3
) q2

M2V − q
2

]

, (B.16)

gT (q
2) =

8FV T
3FM2V

[
2M2V − q

2

M2V − q
2
(c1− c2− c5)

+ 2
M2V
M2V − q

2
c6−2c7

+
√
2
FV

MV

(
M2V
M2V − q

2
d3+d4

)]

. (B.17)

The spectral function of the tensor–tensor currents cor-
relator to which the amplitude in (B.14) contributes be-
haves as a constant at high q2 and leading order in
αS [61]. Hence the fT (q

2) and gT (q
2) form factor should

exhibit a smooth behavior, vanishing at large transferred
momentum.
Imposing that the fT (q

2) form factor vanishes at large
momentum we get the constraint

c1− c2− c5+2c6 =−

√
2

4

FV

MV
(1+4d3) . (B.18)

The same procedure with gT (q
2) gives

c1− c2− c5−2c7 =−
√
2
FV

MV
d4 . (B.19)

Interestingly enough these constraints fully determine
both form factors:

fT (q
2) =

2
√
2FV TFV
3F

MV

M2V − q
2
,

gT (q
2) =−

fT (q
2)

M2V
. (B.20)

Notice that the contribution of the gT (q
2) form factor to

the matrix element under study is fairly suppressed, typic-
ally O(q2/M2V ) over the fT (q

2) contribution.

Appendix C: LSZ formula for a soft pion

In this appendix we discuss the derivation of (43). Let us
start defining three quark currents:

Aµπ(x) = d̄(x)γ
µγ5u(x) ,

T µν5 (x) = ū(x)σ
µνγ5d(x) ,

T µνπ = ū(x)σ
µνu(x)+ d̄(x)σµνd(x) . (C.1)

Then we can construct the following GF that after partial
integration can be expressed as

〈γ(p) |∂αA
αT µν5 | 0〉 (C.2)

≡ i

∫

d4xeirx 〈γ(p) |T {∂αA
α
π(x), T

µν
5 (0)}| 0〉

= rα

∫

d4xeirx 〈γ(p) |T {Aαπ(x), T
µν
5 (0)}| 0〉

− i 〈γ(p) |T µνπ (0)| 0〉 . (C.3)

We can relate this GF to the 〈γ(p) |ūσµνγ5d| π−(r)〉matrix
element (40) through the LSZ formula:

〈
γ(p) |ūσµνγ5d|π

−(r)
〉

= lim
r2→M2π

r2−M2π√
2FM2π

〈γ(p) |∂αA
αT µν5 | 0〉 . (C.4)

Then the 〈γ(p) |∂αAαT
µν
5 | 0〉 GF must have a pole at r

2 =
M2π. Since the second piece in (C.3) has no r dependence it
cannot have a pole, and this must be due to the first term:

rα

∫

d4xeirx 〈γ(p) |T {Aαπ(x), T
µν
5 (0)}| 0〉

≡
1

r2−M2π
Fµν(p, r) . (C.5)

As the divergence of the axial current is zero in the chi-
ral limit, the left hand side must vanish forMπ = 0, which
implies

Fµν(p, r)|Mπ=0 = ir
2 〈γ(p) |T µνπ (0)| 0〉Mπ=0 . (C.6)

Finally, assuming that pion mass corrections are small,
(C.4) yields the desired result:

〈
γ(p) |ūσµνγ5d|π

−(r)
〉
= i

1
√
2F
〈γ(p) |T µνπ (0)| 0〉 ,

(C.7)

which is also the result that stems from the soft pion
theorem.
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